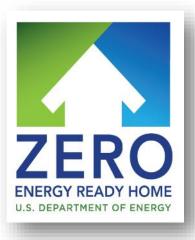


DOE Zero Energy Ready Home


The Easy Lift to Zero from ENERGY STAR Homes

Jamie Lyons, P.E.

Newport Partners
Technical Director, DOE ZERH

- ~230,000
- 62
- ·~85,000

10,000s of homes are within reach of DOE Zero Energy Ready Home. Now.

Specifications: The Easy Lift from ENERGY STAR

Eligible Building Types

- Same as ENERGY STAR Homes

SFD and SFA dwellings

- MF buildings up to 5 stories;
- Central HVAC and DHW is allowed

Focus is New Construction;
 Substantial Rehabs can be qualified;

			Solar Ready
			Eff. Comps.& H ₂ O Distrib.
			EPA Indoor Air Package
			Optimized Duct Location
	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV
	Water	Water	Water
	Management	Management	Management
	Independent	Independent	Independent
	Verification	Verification	Verification
IECC 2012	IECC 2009	IECC 2012	IECC 2012/15
Enclosure	Enclosure	Enclosure	Enclosure
HERS	HERS	HERS	HERS
70-80	65-75	55-65	48-55
IECC	ENERGY	ENERGY	ZERH
2012	STAR v3	STAR v3.1	

Eff. Comps.& H₂O Distrib.

EPA Indoor Air Package

Optimized Duct Location

IECC	ENERGY	ENERGY	ZERH
2012	STAR v3	STAR v3.1	
HERS	HERS	HERS	HERS
70-80	65-75	55-65	48-55
IECC 2012	IECC 2009	IECC 2012	IECC 2012/15
Enclosure	Enclosure	Enclosure	Enclosure
	Independent	Independent	Independent
	Verification	Verification	Verification
	Water	Water	Water
	Management	Management	Management
	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV

DOE ZERH Target Home Sets the HERS Value

Exhibit 2: DOE Zero Energy Ready Home Target Home 7, 20

HVAC Equipment ²¹						
	Hot Climates (2012 IECC Zones 1,2) 22			Mixed Climates (2012 IECC Zones 3, 4 except Marine)	Cold Climates (2012 IECC Zones 4 Marine 5,6,7,8)	
AFUE	80%			90%	94%	
SEER		18		15	13	
HSPF		8.2		9	10 ²³	
Geothermal Heat Pump			ΕN	IERGY STAR EER and COP Crite	eria	
ASHRAE 62.2 Whole-House Mechanical Ventilation System		1.4 cfm/W; no heat exchange		1.4 cfm/W; no heat exchange	1.2 cfm/W; heat exchange with 60% SRE	
Insulation and Infiltration						


Reaching Lower HERS: Target Home Air-Tightness

	ACH50 Requirements/Targets					
Climate Zones	Zero Energy Ready Home Target - Detached	Zero Energy Ready Home Target – Attached*	ENERGY STAR V3.0	ENERGY STAR V3.1	2012 & 2015 IECC	Passive House
1-2	3.0	3.0	6.0	4.0	5. 0	0.6
3-4	2.5	3.0	5.0	3.0	3.0	0.6
5-7	2.0	3.0	4.0	3.0	3.0	0.6
8	1.5	3.0	3.0	3.0	3.0	0.6

ENERGY STAR to Zero Energy Ready Home HERS Threshold (pre ANSI/RESNET 301)

Based on 1800, 2400, and 3600 ft ² prototypes on climate-appropriate foundations.

Warm Climate, Affordable HERS 49

DOE TOUR OF ZERO: VISTA PALM DRIVE BY SOUTHEAST VOLUSIA HABITAT FOR HUMANITY

Cold Climate, Production HERS 3 (low 40s w/o PV)

DOE TOUR OF ZERO: THE HALE PLAN BY NEW TOWN BUILDERS

Hot/Dry Climate, Production HERS 48

DOE TOUR OF ZERO: VIA DEL CIELO BY PALO DURO HOMES

Performance Path Example – Austin, TX CZ2 Prototype - 4 BR, 2400 SF

Specification	Target Home Spec	Design Home
AGW Insulation	R13 (U 0.084)	R15 (U 0.079)
Attic Insulation	R38 (U=0.030)	R38 (U=0.030)
Basement Walls	N/A	N/A
Windows	U=0.40; SHGC=0.25	U=0.35 ; SHGC=0.25
Infiltration	3.0 ACH50	3.0 ACH50
Ducts	Total ≤ 8% cfm25/CFA (192 CFM25) LTO ≤ 4% cfm25/CFA (96 CFM25)	Total: 96 CFM25 LTO: 30 CFM25
AFUE or HSPF	8.2 HSPF	8.2 HSPF
A/C SEER	18	16
Whole-House Mech. Vent.	62 cfm; 1.4cfm/W no heat exchange;	62 cfm; 0.70 cfm/W supply ventilation
Water Heater	HPWH (EF 2.0)	HPWH (EF 2.4)
Hot Water Dist.	RESNET Reference Home	On-Demand (occ sensor)
Lighting	80% Energy Star	80% Energy Star
HERS Index	59 (Target)	59 COMPLIES!

Stepping up to ZERH...

Solar Ready

Eff. Comps.& H₂O Distrib.

EPA Indoor Air Package

Optimized Duct Location

IECC	ENERGY	ENERGY	ZERH
2012	STAR v3	STAR v3.1	
HERS	HERS	HERS	HERS
70-80	65-75	55-65	48-55
IECC 2012	IECC 2009	IECC 2012	IECC 2012/15
Enclosure	Enclosure	Enclosure	Enclosure
	Independent	Independent	Independent
	Verification	Verification	Verification
	Water	Water	Water
	Management	Management	Management
	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV

2012/2015 IECC Insulation

Compliance with next generation code

- Three Options for Compliance:
 - ✓ Prescriptive
 - ✓ Alternative equivalent U-factor
 - ✓ Total UA calculation
 - allow for modest trade-offs of insulation levels from one part of the envelope to others.

2012/2015 IECC Insulation

	CZ 2	CZ 3	
Walls	R-13 (rec. R13+5)	R-20 or R-13+5 (rec. R-13+5)	
Ceiling	R	-38	
Floor	R-13	R-19	
Basement	R-0	R-5/13	
Crawl Space	R-0	R-5-13	
Slab	R-0 (rec. R-5 slab edge)		

How to Check UA Compliance

CZ 2 - 2400 SF Austin, TX.blg

2012 IECC Building UA Compliance

Property ZERH Reference Home Model ,	Organization Builder	HERS Based On Plans Rater ID:
Weather: Austin, TX		

Elements	Insula	tion Levels
	2012 IECC	As Designed
Shell UA Check		
Ceilings:	36.0	36.4
Above-Grade Walls:	173.5	175.0
Windows and Doors:	160.0	155.6
Slab Roor:	51.1	51.1
Overall UA (Design must be equal or lower):	420.6	418.1

- Run UA compliance report within HERS Rating software
- Design Home UA must be ≤ 2012 IECC version of the home

High-R Wall Options

Adv. Framing w/Thicker Walls

- R-17 R-21 (U 0.052-0.060)
- Higher Framing Factor (~12-15%)
- Multiple insulation options

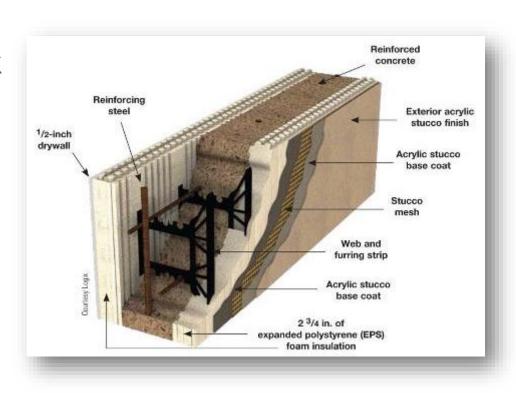
2x6 with Staggered Studs

- 2x6 plates with 2x4 staggered studs at 12"/24" o.c.
- Can reduce thermal bridging by 80-90%
- Cost competitive with traditional 2x6 wall

Rigid Insulation w/Sheathing

- R-18 Wall (U 0.054)
- Complete Thermal Break
- WSP should be kept above T_{DP}
- Can Combine Sheathing w/ Weather Resistant Barrier
- Cladding Installation Issues
 - Fastening follow man. specs
 - Furring follow man. specs

Structural Insulated Panels (SIPs)


- R-26 Walls (6") (U 0.034)
- Substantial Thermal Break (3 – 8% Framing Factor)
- Special Construction Practices Required
- Significantly Reduced Time-of-Construction
- Reduced Dimensional Variation Corrections

Insulated Concrete Forms (ICFs)

- ~R-24 Walls (U 0.038)
- Complete Thermal Break
- Useful Thermal Mass
- Foundation has to be Perfectly Level
- Panel option
- Disaster Resistant
- Termite Resistant

Double-Wall

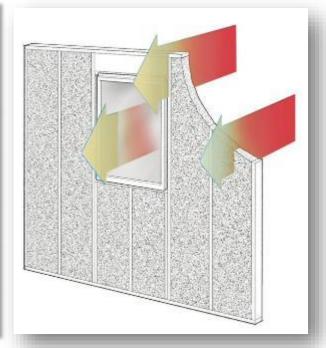
- R-26 Walls (U ~ 0.034)
- Studs offset for thermal break
- Condensation management at outside sheathing surface:
 - Modeling needed to assure moisture control
 - Vapor-open designs use higher-perm sheathing such as gypsum may be used

 Uses same material and techniques already understood by trade partners

ENERGY STAR Windows

- Updated Specs

ENEGY STAR
Window Specs to
Apply to DOE Zero
Energy Ready
Home Projects¹


Hot Climates IECC CZ 1-2		Mixed Climates IECC CZ 3-4 except Marine		Cold Climates IECC CZ 5-8 and 4 Marine ²	
U-Value	SHGC	U-value SHGC		U-Value	SHGC
0.40	0.25	[CZ 3] 0.30 [CZ 4] 0.30	[CZ 3] 0.25 [CZ 4] 0.40	0.30 0.31 0.32	Any ≥0.35 ≥0.40

- 1. DOE Zero Energy Ready Home offers multiple compliance paths including area weighting and allowances for passive solar design. See the National Program Requirements, Exhibit 1 with footnotes, for details.
- 2. These U & SHGC values are based on the ENERGY STAR v5.0 Window Specifications. DOE ZERH will review the feasibility of adopting ENERGY STAR v6.0 Window Specifications, which entail lower U values, periodically. Any program update to require the v6.0 window specs will be announced with a minimum 1-year phase-in.

Windows Are a Big Deal

Window 15% of Wall Area	Wall R-Value with Windows w/Varied Wall Insulation Levels				
U-Value	R-0	R-18	R-39	R-60	
0.30	R-5	R-11	R-15	R-17	
0.20	R-5	R-13	R-19	R-23	
0.15	R-5	R-14.5	R-23	R-28	
0.10	R-5.5	R-16	R-27	R-34	

Sources:

"Holes in the Wall: To Improve the Energy Performance of Walls, Look at the Total R-Value," Journal of Light Construction, February 2014;

Multi-Assembly R-Value / U-Value Calculator – Cascadia Windows and Doors; Michael Blasnik Presentation, 2014 ACI Conference

Stepping up to ZERH...

Solar Ready

Eff. Comps.& H₂O Distrib.

EPA Indoor Air Package

Optimized Duct Location

111/40 01 :41

	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV	V
	Water Management	Water Management	Water Management	V
	Independent Verification	Independent Verification	Independent Verification	V
IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Enclosure	V
HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	V
IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	

The Importance of Duct Performance

95% Condensing Furnace

X

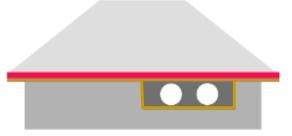
60% Efficient Duct Distribution

57% System Efficiency

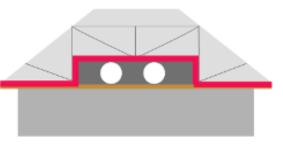
80% Furnace

X

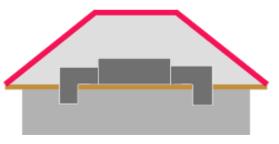
90% Efficient Duct Distribution

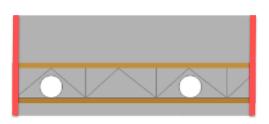

72% System Efficiency

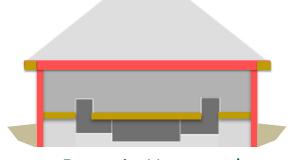
Cooling:


If we're using a SEER 21, variable speed A/C system...

- SEER 21 has *twice* the run time vs a SEER 13 system
- Ducts in conditioned space: SEER 21 gives 40% savings
- Ducts not in conditioned space: just 27% savings


Options for Optimized Duct Location


Ducts in Dropped Ceiling

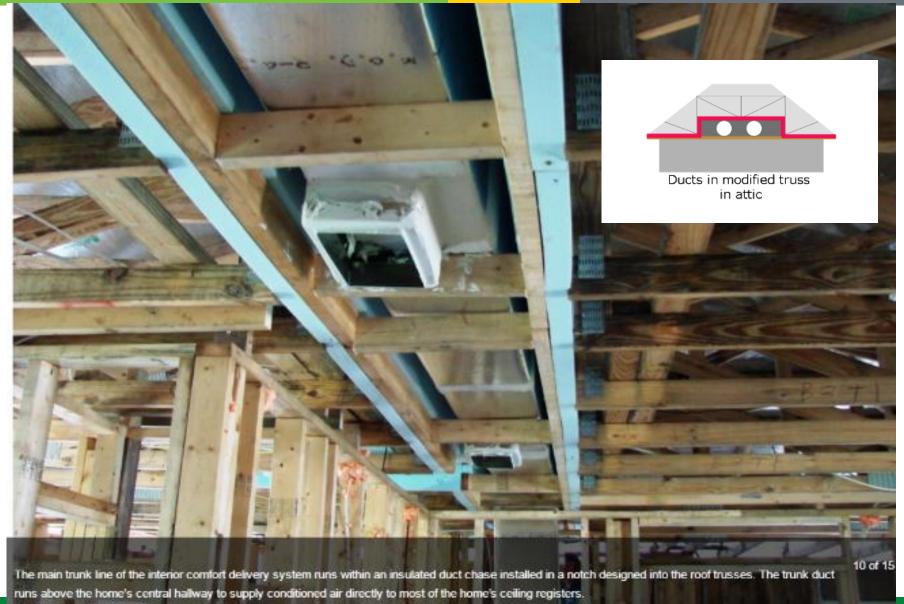

Ducts in Modified Attic Truss

Ducts in Unvented Attic

Ducts Between Floors

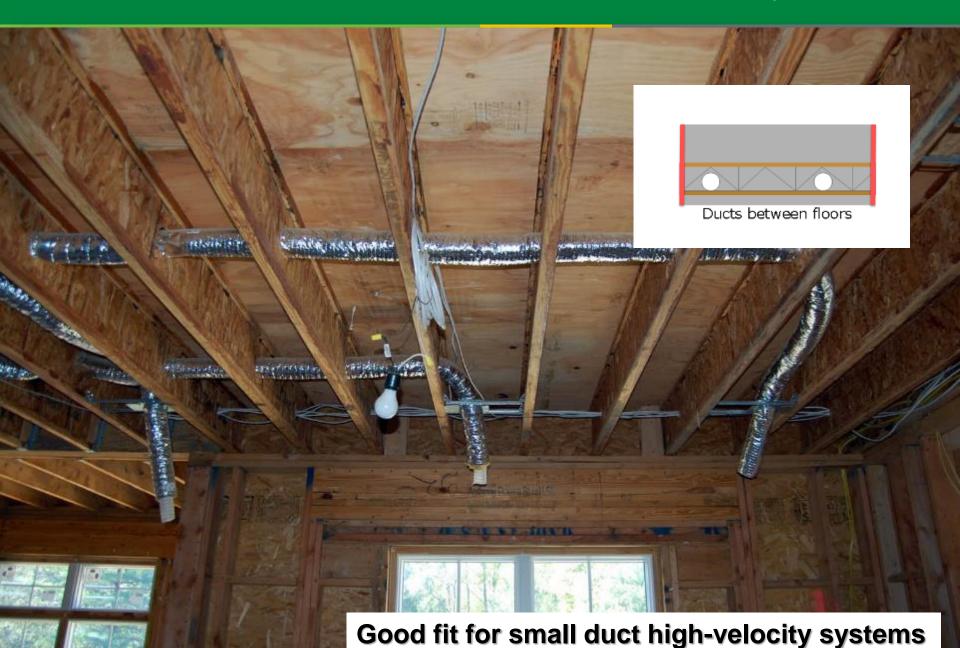
Ducts in Unvented
Crawl Space/Basement

Ducts in Vented Attic

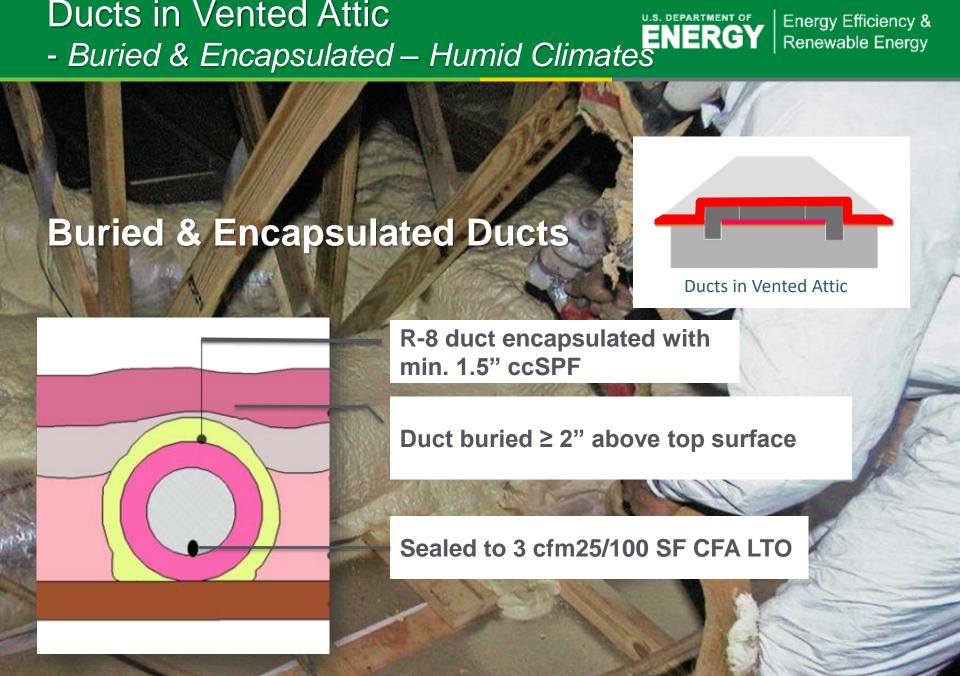

- Buried & SPF encapsulated
- Buried (2018 IECC)

Ducts in Dropped Ceiling

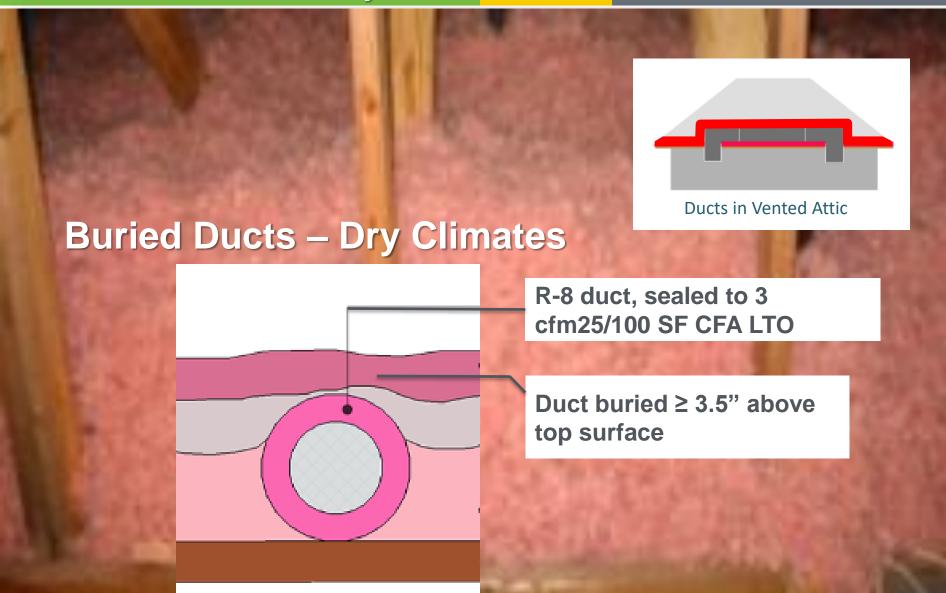
Ducts in Modified Attic Truss


Ducts in Unvented Attic

Ducts Between Floors



Ducts in Vented Attic



Ducts in Vented Attic

- Buried Ducts - Dry Climates

Buried Ducts – 2018 IRC

- 2018 IRC recognizes buried duct approaches
 - Buried
 - Deeply buried
 - Buried / In Conditioned Space
- Buried / Ducts In Conditioned Space (ICS)
 - HVAC equipment in conditioned space
 - Sealed to 1.5 cfm25 /100 ft² CFA LTO
 - CZ 1A, 2A, 3A: R-13 supply ducts
 - R-8 elsewhere
 - R-value of insulation above the duct is at least the value of ceiling insulation value, minus the R-value of the duct
 - Recognized by DOE ZERH program as Optimized Duct Location

Optimized Ducts Exemptions

Short Duct Run

up to 10' of total length is permitted to be outside of the home's thermal and air barrier boundary.

Jump Ducts

may be located in attics if all joints, including boot-todrywall, are fully air sealed with mastic

Ductless HVAC system

Stepping up to ZERH...

Solar Ready

Eff. Comps.& H₂O Distrib.

EPA Indoor Air Package

Optimized Duct Location

IAP Certification

	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV
	Water	Water	Water
	Management	Management	Management
	Independent	Independent	Independent
	Verification	Verification	Verification
IECC 2012	IECC 2009	IECC 2012	IECC 2012/15
Enclosure	Enclosure	Enclosure	Enclosure
HERS	HERS	HERS 55-65	HERS
70-80	65-75		48-55
IECC	ENERGY	ENERGY	ZERH
2012	STAR v3	STAR v3.1	

ENERGY STAR + Indoor airPLUS

Envelope

HVAC

Moisture

CO

Radon

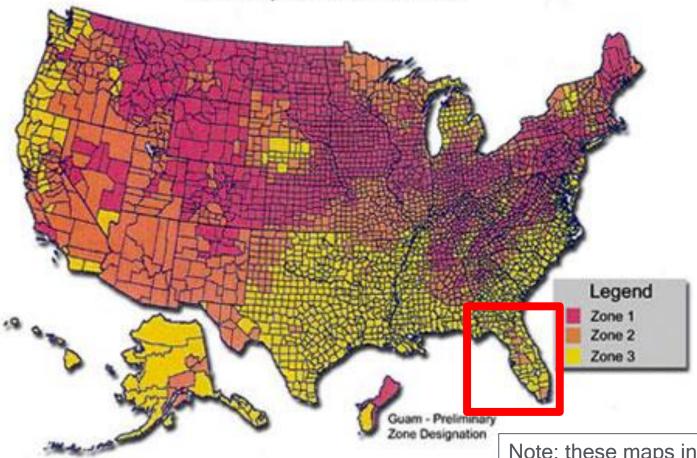
Pests

Materials

CO+

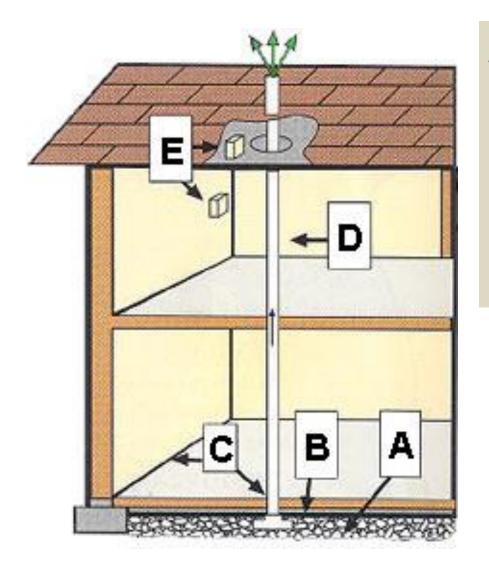
HVAC +

Moisture +


Comprehensive Indoor Air Quality Protection

4

Radon Zones in U.S.


EPA Map of Radon Zones

Surgeon General's Warning: Radon Causes Lung Cancer

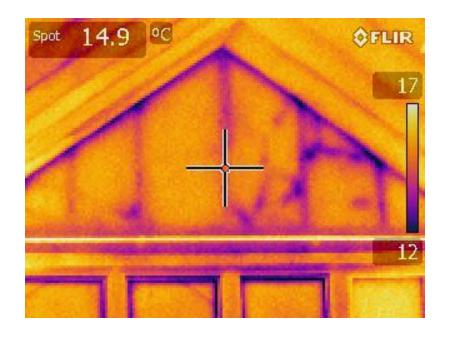
Note: these maps indicate average risk by county.
However, **High levels of Radon can be found in any home**.

Radon Resistant Construction in Radon Zone 1

Required for Moisture Control:

- A. Gas Permeable Layer (min. 4" clean gravel)
- B. Plastic Sheeting (under slab)
- C. Sealing and Caulking (all openings in concrete floor)
- D. Vent Pipe (3 or 4 inch PVC pipe)
- E. Junction Box (if fan needed later)

Radon Test Kits Not Required



Corrosion-proof rodent/bird screens for openings (e.g., copper or stainless steel mesh)

Exception: clothes dryer vent

More IR Means More Rodent Info

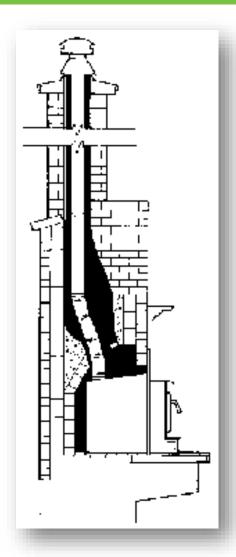
Low Emission Materials

- Low formaldehyde pressed wood
- Low formaldehyde cabinets
- Low VOC paints
- Low VOC carpet, padding, adhesives

Identifying Low-Emission Pressed Wood, Cabinets, Carpets, and Paints...

- Low emission materials and products are rapidly evolving
- Labels & certifications can be challenging to navigate
- To help partners identify sources and spec products, a new IAP resources is available:

How to Find Indoor airPLUS Compliant Low-Emission Products


Requirement: Use Cabinetry made with component materials (plywood, particleboard, MDF) that are certified to comply with the appropriate standards above; OR registered brands or products produced in plants certified under the Kitchen Cabinet Manufacturers Association's (KCMA) Environmental Stewardship Certification Program (ESP 05-12); OR GREENGUARD or GREENGUARD Gold Certification for Cabinetry.

Meet at least one standard below	How to find compliant products	
KCMA's Environmental Stewardship Program (ESP 05-12)	Look for the KCMA-ESP label on cabinets (often sink bases), product packaging, and/or spec sheets. For a list of KCMA certified manufacturers that produce compliant cabinets, visit: http://www.kcma.org/Members/ESP Certified Manufacturers Note: Manufacturers listed in the link above can be used as a resource, but partners should request confirmation from the manufacturer or supplier that the product lines they are using are indeed compliant.	

Combustion Safety+

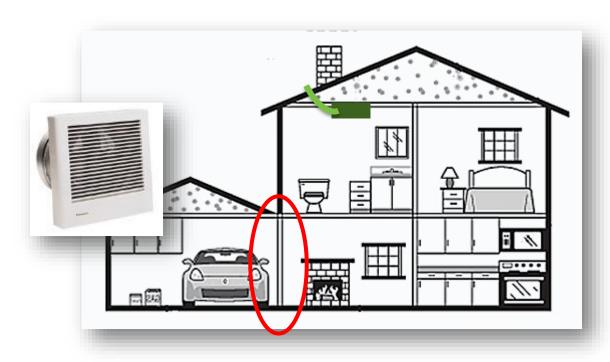
Certified Fireplaces & Stoves

- Vented to outdoors
- Adequate Combustion and Ventilation Air
- Gas fireplace power or direct vented
- Meet Specified Standards

Combustion Safety+ Certified CO Alarms & ETS (for MF)

CO Alarm in each bedroom area

CO Alarm


Combined CO & Smoke Alarm

Enforceable policy in Multi-family buildings

Combustion Safety+ Attached Garage Isolation

IF house has exhaustbased WHMV system, then:

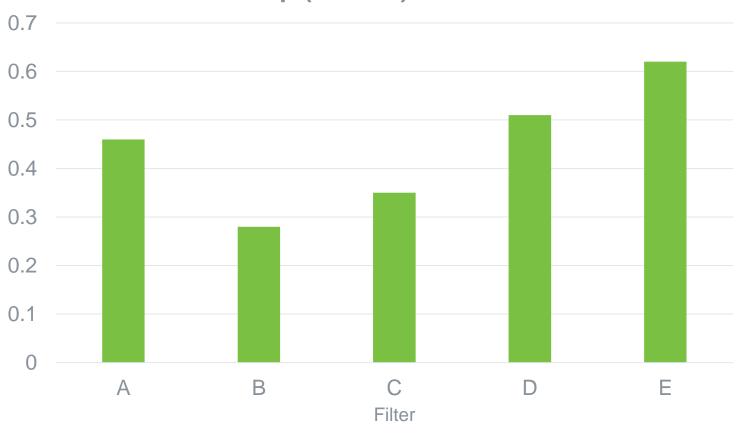
- a. Install garage exhaust fan,OR
- b. House WRT garage ≥45 Pa, when house is+ 50 Pa relative tooutdoors

Automatically closing, gasketed door

No Air Handler in the Garage

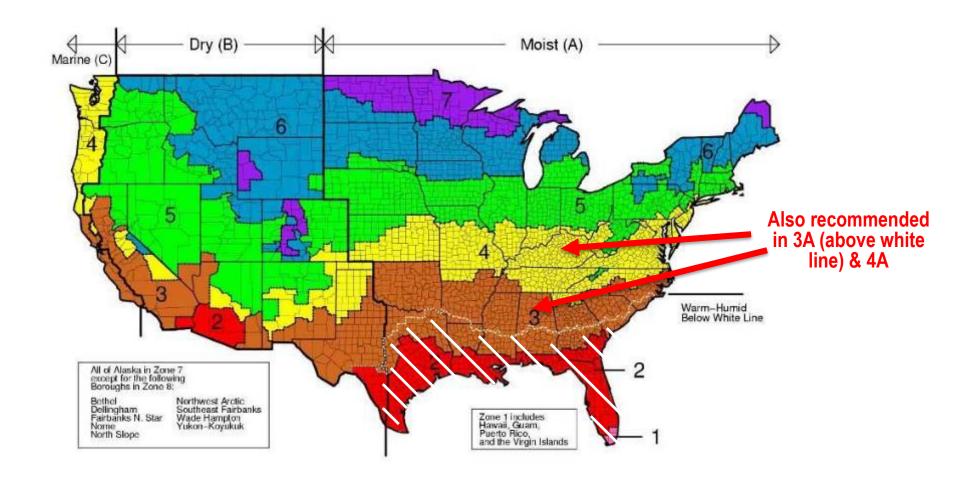
No Building Cavity Ducts

HVAC+ High-MERV HVAC Filter



8 MERV Filter Minimum

Pressure Drop (in. w.c.) of MERV 8 Filters



Source: Dave Springer, Davis Energy Group

Install equipment with sufficient latent capacity to maintain indoor RH ≤ 60%.

Dehumidification Options & Energy

- Strategies for maintaining indoor RH < 60% along with relatively low operating costs:
 - Stand-alone dehumidifier
 - Ducted dehumidifier
 - Central, variable speed A/C system with a dehumidification mode & controls

Energy Consumption:

- About 170 kWh/yr could be expected for a HERS 50 house (~
 DOE ZERH level) with a 60% RH setpoint.
- With a <u>50% RH</u> setpoint energy consumption is **about 5X**

Supplemental Dehumidification for Humid Climates. Presented by Armin Rudd, Building Science Corp, at ACI National Conference May 2013. Supported in part by DOE Building America

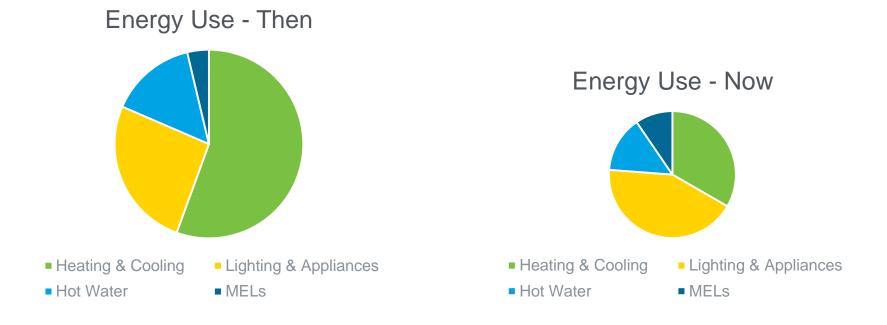
Stepping up to ZERH...

Solar Ready

Eff. Comps.& H₂O Distrib.

EPA Indoor Air Package

Optimized Duct Location


	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV
	Water	Water	Water
	Management	Management	Management
	Independent	Independent	Independent
	Verification	Verification	Verification
IECC 2012	IECC 2009	IECC 2012	IECC 2012/15
Enclosure	Enclosure	Enclosure	Enclosure
HERS	HERS	HERS 55-65	HERS
70-80	65-75		48-55
IECC	ENERGY	ENERGY	ZERH
2012	STAR v3	STAR v3.1	

Components and MEL's are increasingly larger part of total energy use in low-load homes (~50%).

Zero Energy Ready Home requires:

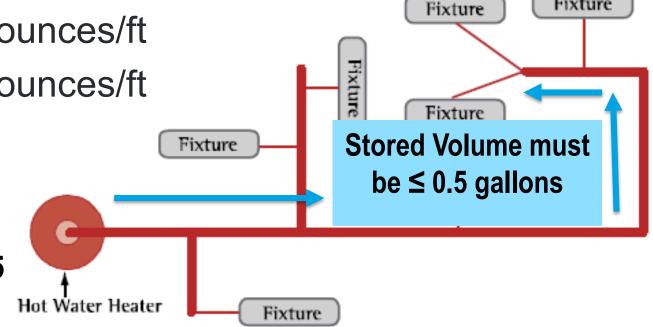
- ENERGY STAR Certified Appliances:*
 refrigerators, dishwashers, clothes washers
- ENERGY STAR Certified Fans*: bathroom ventilation, ceiling fans
- ENERGY STAR Certified Lighting:
 Min. 80% of fixtures or lamps (CFL or LED)
- WaterSense Hot Water Distribution

^{*}Only where installed by builder

Built for when water was free and energy was cheap!

Copper L piping:

- 1" = 5.53 ounces/ft
- $\frac{3}{4}$ " = 3.22 ounces/ft
- $\frac{1}{2}$ " = 1.55 ounces/ft

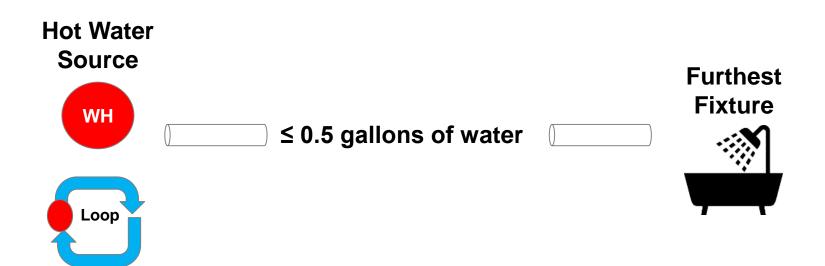

Esample: Volume:

30'. Gradions

10' branch

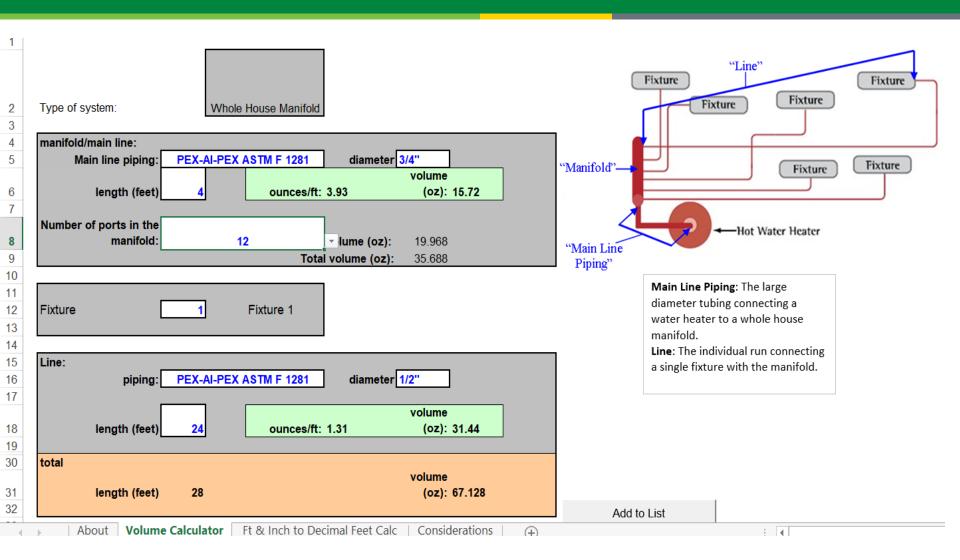
5 **Waig** Time: 1 – 1.5

2 minutes overhead



Fixture

Efficient Hot Water Distribution

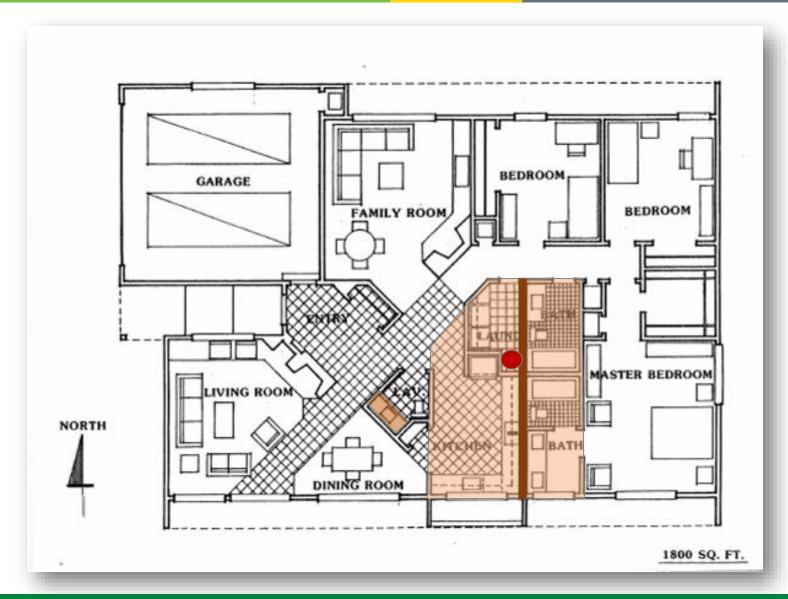


Based on EPA WaterSense Specifications:

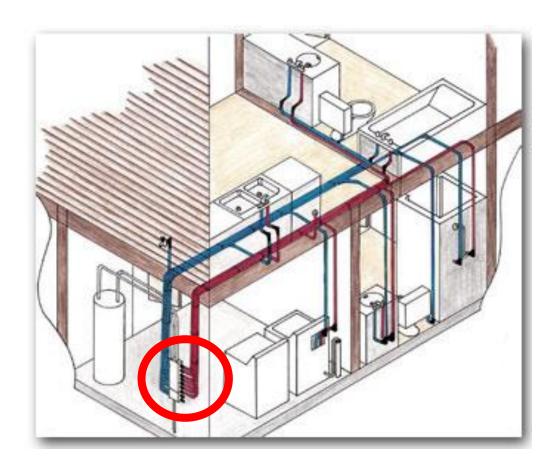
Hot Water Volume Estimating Tool

Available at DOE ZERH website under Participation Guidelines

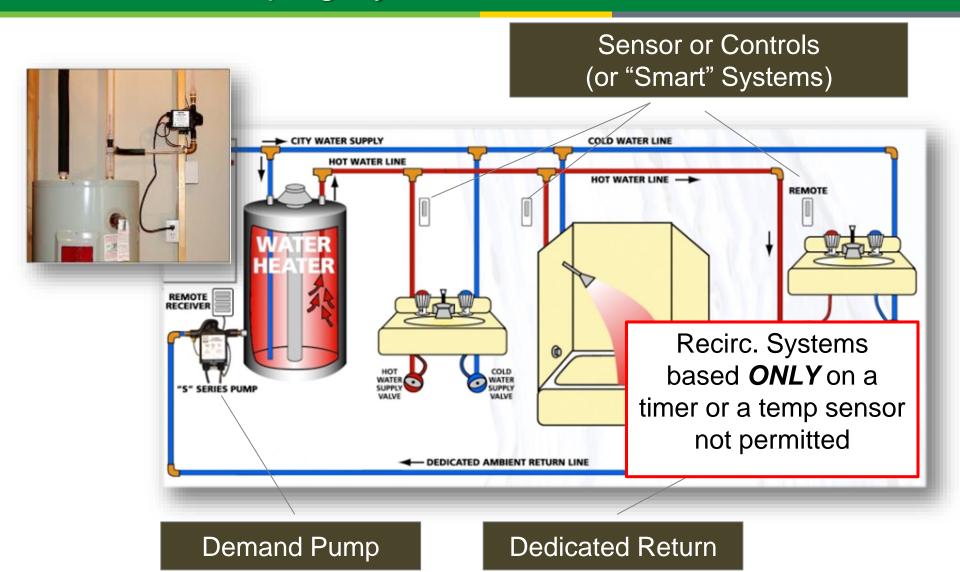
Hot Water Distribution Options

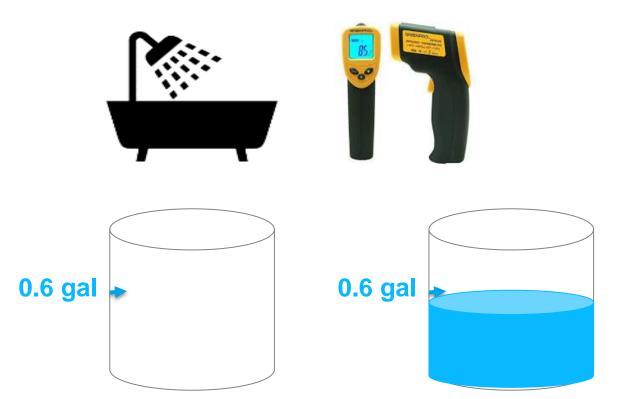

- 1. Core Plumbing Layout (wet wall)
- 2. Manifold System
- 3. Demand Pumping System

Multifamily


CDHW systems permitted with modified requirements

Core Plumbing Layout


Manifold Plumbing System


Demand Pumping System

Verifying Efficient Hot Water Distribution

T_{fin} - T_{init} must be at least 10 F

Prime loop (if applicable)
Start flow
Take T_{init} (of flow)

Stop at 0.6 gallons
Take T_{fin} (of flow)

Stepping up to ZERH...

Solar Ready

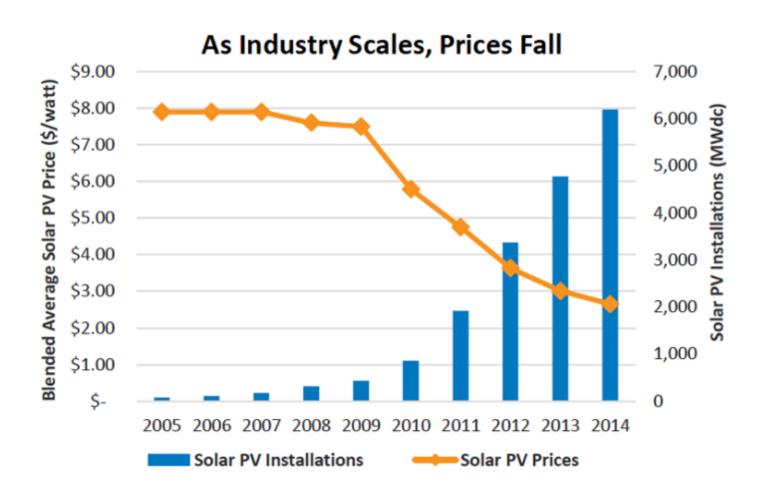
Eff. Comps.& H₂O Distrib.

/

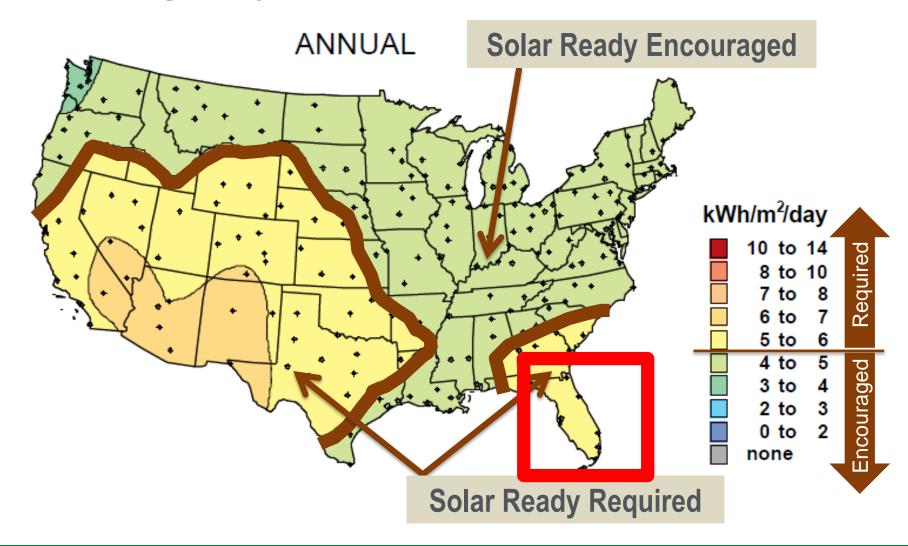
EPA Indoor Air Package

/

Optimized Duct Location



	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV
	Water	Water	Water
	Management	Management	Management
	Independent	Independent	Independent
	Verification	Verification	Verification
IECC 2012	IECC 2009	IECC 2012	IECC 2012/15
Enclosure	Enclosure	Enclosure	Enclosure
HERS	HERS	HERS 55-65	HERS
70-80	65-75		48-55
IECC	ENERGY	ENERGY	ZERH
2012	STAR v3	STAR v3.1	



Source: SEIA / GTM Research

PV-Ready Checklist Applicability

Average Daily Solar Radiation Per Month

PV-Ready Allowances

Not required in areas lacking access to

significant solar resources:

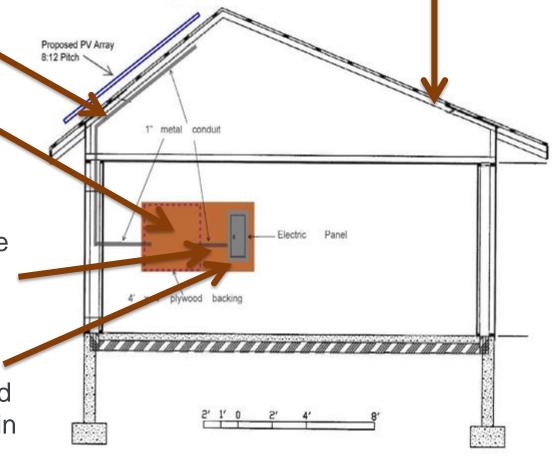
- Tree Shading
- Tall Buildings
- Available South Facing Roof

Multifamily Building Allowances:

 PV-ready features may be provided for the common space instead of at the dwelling level

Documentation of the maximum allowable dead load and live load ratings of the existing roof (Rec DL.: 6 lbs./sq. ft.)

Conduit to run DC wire from roof to inverter


Dedicated Area

for installing inverter and balance of system

Conduit to run AC wire from inverter location to electric panel

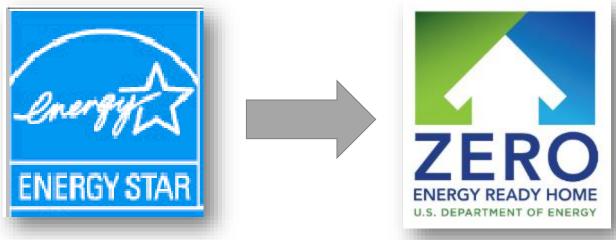
Circuit Breaker

designated and/or installed for use by the PV system in the electric panel

Stepping up to ZERH...

Solar Ready

Eff. Comps.& H₂O Distrib.


EPA Indoor Air Package

Optimized Duct Location

	HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV
	Water	Water	Water
	Management	Management	Management
	Independent	Independent	Independent
	Verification	Verification	Verification
IECC 2012	IECC 2009	IECC 2012	IECC 2012/15
Enclosure	Enclosure	Enclosure	Enclosure
HERS	HERS	HERS 55-65	HERS
70-80	65-75		48-55
IECC	ENERGY	ENERGY	ZERH
2012	STAR v3	STAR v3.1	

"It depends"

- Base energy code?
- ENERGY STAR v3.1?
- Is the builder already...
 - Including Passive Radon Reduction? (Zone 1)
 - Including Dehumidification? (Hot/Humid)
 - Optimizing the duct location?
 - Using a manifold or hot water recirc?

Energy Savings and Cost Analysis

- Compares costs and savings for ZERH relative to 2009 and 2012 IECC code-minimum homes
- In all scenarios, monthly energy savings are greater than added monthly mortgage add-on
- Available on ZERH website under Resources

DOE Zero Energy Ready Home

Savings & Cost Estimate Summary

October 2015

www.buildings.energy.gov/zero

Zero Energy Ready Home Getting Started

Getting Started with Zero Energy Ready

ENERGY STAR & DOE ZERH

- Same rater network
- Same modeling software (at least 3 different options)
- Same plan review & site inspection protocol

Getting Started with Zero Energy Ready

Process:

- Become a Builder or Rater partner (online)
- No need to pre-register projects; no program fees
- Recommend integrated design process (MEPs)
- Rater: plan review & site inspections
- Project Certification
 - Rater sends compliance report (generated by modeling software) to DOE or RESNET Registry
- Builder credited with certified home on DOE website

Thank You!

Resources & Next Steps

www.buildings.energy.gov/zero/

- Become a Partner
- Program Specs
- DOE Tour of Zero
- 24+ Recorded Webinars
- Marketing Took Kit

